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Abstract. The Raman spectra of quantum wires in the region of electronic intra-band excitations are
investigated using one- and two-band models based on the Luttinger approximation with spin. Structures
related to charge and spin density modes are identified, and analyzed with respect to their behavior with
photon energy and temperature. It is found that the low-energy peaks in the polarized spectra, close to
resonance that are commonly assigned to “single particle excitations”, can be interpreted as the signature
of spin density excitations. A broad structure in the resonant depolarized spectrum is predicted above
the frequency of the spin density excitations. This is due to simultaneous but independent propagation of
spin and charge density modes. The results, when compared with experiment, show, that the electronic
collective excitations of quantum wires at low energies are characteristic for a non-Fermi liquid.

PACS. 71.45.-d Collective effects – 78.30.-j Infrared and Raman spectra – 73.20.Dx Electron states in
low-dimensional structures

1 Introduction

In recent years, interactions between electrons in conden-
sed matter has become an important issue. The “classical”
Fermi liquid theory has been generally accepted as being
able to account for most of the phenomena in metallic
solids. Since the discovery of the superconductivity in ce-
ramic materials, and the fractional quantum Hall effect,
it has been suspected that other, more intricate models
might be necessary in order to understand the underly-
ing physics. An exactly solvable model for an interacting
quantum system which does not show the characteristic
feature of a Fermi liquid, the “Luttinger liquid model”
for electrons in one dimension (1D) [1], has been stud-
ied since about three decades. However, clear experimen-
tal evidence for the non-Fermi liquid properties predicted
by this model has not yet been found, except possibly in
quasi-1D inorganic and organic conductors [2], and in the
fractional quantum Hall effect [3].

Almost perfect quasi-1D electron systems can be ex-
perimentally provided by structuring the two-dimensional
electron gas in semiconductor hetero structures. It is also
possible to tune the density of the electrons in these quan-
tum wires via doping or changing the voltage at external
gates. The question arises whether or not Luttinger be-
havior can be found in quantum wires. It is this problem
which we want to address in the present paper by extend-
ing the results of a previous publication [4].
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As non-Fermi liquid behavior is most clearly shown by
the energetically low-lying excitations of the interacting
electrons in one dimension – which are collective – an ex-
perimental tool for possibly providing this information is
the inelastic scattering of light [5]. We will demonstrate
that the excitation spectra of quantum wires obtained
by Raman scattering show indeed very pronounced non-
Fermi liquid features which, to the best of our knowledge,
have not been identified as such before.

1.1 Summary of Raman experiments on quantum wires

Since the advent of semiconductor hetero structures,
which are of outstanding importance for the development
of electronic devices, Raman scattering has become an
important tool for investigating the fundamental single-
particle and the collective modes of the quasi-2D gases of
the electrons and the holes in these artificial structures
[6,7]. Recently, the Raman technique has been used to
study the collective elementary excitations in quantum
wires and dots, mostly based on AlGaAs/GaAs hetero
structures, at liquid Helium temperatures [8–15]. Here,
the electrons are laterally strongly confined in order to
form a quasi-1D or 0D gas of charged particles. Of special
importance for the understanding of the collective modes
in the interacting 1D electron gas are recent Raman stud-
ies of quantum wires with only two occupied sub-bands
[16,17].
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The spectra of these systems show pronounced struc-
tures that are interpreted in terms of inter- and intra-sub-
band excitations. The frequencies of the inter-sub-band
transitions are finite for vanishing wave numbers, and are
characteristic of interplay between the confining poten-
tial in the lateral direction, which determines the energy
splitting between the sub-bands, and the electron-electron
interaction. The frequencies of the intra-sub-band excita-
tions vanish in the limit of long wave lengths. They can be
expected to display the collective excitations of the elec-
trons that are completely determined by the interactions.

In particular, in the region of the intra-sub-band tran-
sitions, the Raman spectra of quantum wires show char-
acteristics of charge density wave excitations (CDE), in
parallel polarization of incident and scattered light (polar-
ized configuration). Spin density wave excitations (SDE)
are probed when incoming and scattered light are po-
larized perpendicularly (depolarized configuration). When
the frequency of the incident light is tuned close to that
of the energy gap between the valence and the conduction
band, additional structures are observed in both types
of spectra. They have been interpreted as “single parti-
cle excitations” (SPE). The intensities of these peaks in-
crease strongly when the frequency of the incident light
approaches the energy gap. The presence of luminescence
radiation makes a systematic experimental study of the
peaks extremely complicated.

The physical origin of the SPE structures has been –
and presently still is – controversely discussed. In doped
bulk-GaAs, they have been assigned to excitations that
are not completely screened by the Coulomb interactions
in the electron gas [18]. For quantum wires, with the
electron density and the geometry of the wires adjusted
such that only two electronic sub-bands were occupied,
SPE have been investigated carefully, and were discussed
in great detail [16,17]. Their energy dispersion has been
found to be very close to that of the pair excitations in a
non-interacting Fermi-liquid in contrast to the dispersion
of the CDE. In AlGaAs/GaAs quantum wires with sev-
eral sub-bands occupied, the SPE have been interpreted
as resulting from “energy density fluctuations” [14].

1.2 Overview over the theory

The formal theory of Raman spectra of electrons in many-
particle solid state systems has been developed in the six-
tieth and seventieth. Primarily, efforts have been focused
on including the effects of the crystal potential [19–21].
Later, the influence of a magnetic field [22], and the in-
terplay between single particle excitations and interaction
modes like plasmons and spin density waves have been
considered [23–25]. Already at early stages of the field
it has become clear that Raman scattering is an excel-
lent tool for detecting the elementary excitations of many-
particle systems. During the last decade, it has turned out
to disclose in great detail the electronic collective modes
of mesoscopic semiconducting systems as inversion layers,
quantum wires and dots.

Quantum wires are of fundamental interest, since here
the electrons are confined to quasi-1D “channels”. These
are represented by the electronic sub-bands that are due to
the spatial confinement of the electrons in two, say, the y-
and the z-direction, and in which the electrons can move
freely in the x-direction. Electrons in the sub-bands can
be considered to constitute to a very good approximation
1D plasmas. The Fermi surface of a single sub-band con-
sists only of two isolated points, namely ± kF . Except for
special points in wave-number space, namely k = 0, 2kF ,
4kF ..., energetically low-lying particle-hole excitations are
absent. This feature, which is peculiar of 1D, implies that
the electrons cannot be described within Fermi-liquid the-
ory using the Landau quasi-particle picture where inter-
actions are treated approximatively and incorporated into
certain parameters like the effective mass of the quasi-
electrons. Within the so-called Luttinger-liquid theory,
low-energy elementary excitations of such a 1D interact-
ing electron plasma can basically be described exactly. The
many-particle Hamiltonian can be diagonalized, and the
correlation functions can be calculated [1,2,26–29]. The
characteristic feature of the Luttinger system is the ab-
sence of low energy single-particle excitations. The ener-
getically lowest excitations are collective charge and spin
density modes which propagate with different velocities.

Due to its mathematical rigor, the theory of the Lut-
tinger liquid is very useful for many-particle systems. It
allows not only for the calculation of the spectrum of the
excitations but can also be used for determining corre-
lation functions. Its drawback is that it is restricted to
strictly 1D, which means for quantum wires only one oc-
cupied sub-band. For interpreting experiments, one has
often to consider more than one sub-band. Then, other
many-particle methods, as, for instance, the random-phase
approximation (RPA) or the Hartree-Fock method [30],
have to be used. They allow to treat more “realistic sys-
tems”, however, often at the expense of using uncontrolled
approximations. Evidently, one requirement for approxi-
mative many-body methods is that they should be able to
treat the Luttinger limit correctly. In particular, in the
one-sub-band limit, the energetically lowest excitations
should be collective and not quasi-particles.

In recent years, the theory of non-Fermi liquids has be-
come very important, not only in connection with meso-
scopic quantum wires, but also for the fractional quantum
Hall effect [31] and high-temperature superconductivity
[32]. The study of the Raman scattering from the quasi-
1D electron gas in semiconductor quantum wires seems
to us particularly important for obtaining insight into the
nature of the low-lying excitations of non-Fermi liquids.

The above mentioned Raman studies of quantum wires
do reveal the spectral features of the 1D electron plasma
in the energy region of the intra-band “plasmon” excita-
tions. The only exception seems to be the mode observed
near resonance denoted as SPE. Remarkably, this mode
does not show the conventional polarization dependence.
Its energy dispersion is similar to that of the collective
spin density excitations, but it appears also in the par-
allel configuration, a property of a typical CDE mode.
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If it was a CDE, it should be influenced by the electron-
electron interaction. This seems not to be the case, since
the dispersion is characterized by a velocity which is very
close to that of pair-excitations in a gas of non-interacting
electrons. For these reasons, its interpretation as a signa-
ture of the presence of “single particle excitations” has
only been too suggestive.

On the other hand, modes with these properties have
not been predicted within the Luttinger-liquid theory [33].
The results of recent elaborate RPA calculations [34] are
also consistent with the absence of the SPE at low excita-
tion energies. In the latter work, by including two occupied
sub-bands [35], the observed SPE peaks at low energies
have been interpreted as an out-of-phase CDE in the two-
band system in which the long-range part of the Coulomb
interaction is cancelled [33]. On the other hand, as has
been pointed out in [16], the velocity of such excitations
appears much too small to be consistent with the experi-
ments done on quantum wires with the second sub-band
almost empty. Also, the dependence on the polarization
does not seems to be correct.

1.3 Results

In the present work, we want to point out that the peaks
at low excitation energy in the polarized Raman spectra
that are strongly enhanced when the photon energy ap-
proaches the energy gap, can be understood within the
existing theory of the collective excitations of the 1D in-
teracting electrons with spin in the Luttinger approxima-
tion. We show that they are signatures of the collective
spin density excitations and should appear approximately
at the same energy, namely vσ|q| (vσ, q velocity and wave
number of spin density excitations, respectively). They
originate physically in higher order terms in the Raman
cross-section which have to be taken into account if the
frequency of the incident light approaches the energy gap.
These terms induce a relaxation of the “classical” selection
rules that are valid for non-resonant Raman scattering. As
consequence, spin and charge density features can appear
in the polarized and the depolarized configurations, re-
spectively. Indeed, our results quantify the suggestion of
a so-called singlet spin mode as being responsible for the
“SPE”-peaks which has been mentioned to the best of our
knowledge for the first time in [33]. Thus, we resolve for
the low-energy excitations in quantum wires the problem
of the “SPE” posed in [18].

Furthermore, we quantitatively show how the strength
of the “SPE”-peaks in the polarized spectra, ISPE , vary
with the energy of the incident photons, h̄ωi. In particular,
when h̄ω, h̄vF q < |EG − h̄ωi| (EG energy gap, vF Fermi
velocity), we find

ISPE ∝ |EG − h̄ωi|
−4 , (1)

and it increases quadratically with the temperature.
As a further consequence of the resonance condition,

we predict that structure associated with simultaneous,
but independent, propagation of spin and charge density

excitations should appear in the depolarized spectra due to
higher correlation function becoming important. In con-
trast to the spin density excitations in the polarized spec-
tra, this structure is not merely a sharp peak but a rather
broad continuum in the scattered intensity on the high
energy side of the SDE-peak.

In addition, we re-investigate within our model the in-
fluence of the presence of an additional sub-band of the
quantum wire, including spin. Specifically, we confirm and
generalize previous results [33,35] namely that due to the
inter-band coupling induced by the interaction the charge
density mode with the lowest energy is proportional to the
wave number but with the geometric mean of the Fermi ve-
locities of the two bands as the prefactor. When the Fermi
level approaches the onset of the second sub-band, the en-
ergy of this branch tends to zero. As mentioned above
[16], this makes an interpretation of the structure in the
Raman spectra associated with the “SPE” in terms of the
low-velocity charge density excitations impossible, if the
limit of the occupation of only one band is approached.

Our results, when compared with the experimental
data, indicate that the excitation spectra of quantum
wires in the region of intra-band transitions, can be un-
derstood within the non-Fermi liquid framework of the 1D
electron gas.

2 Theory of Raman spectra

Within the standard theory of Raman scattering [22–24]
the differential cross-section is given by Fermi’s golden rule

dσ

dΩdω
∝

〈∑
f

|Mfi|
2δ(Ef −Ei − h̄ω)

〉
i

(2)

where i and f denote initial and final states, respectively,
ω = ωf−ωi is the difference between the frequencies of the
incident and the scattered light, respectively, and 〈· · · 〉i
the thermal average over the initial state. The transition
matrix elements Mfi consist of terms proportional to A2

and Π · A (A, Π the vector potential and momentum
operator, respectively). The latter term has to be treated
in second order. Its evaluation requires further approxi-
mations, especially near resonance. The final result is

dσ

dΩdω
=

(
e2

m0c2

)2
ωf

ωi

n(ω) + 1

π
Im χ(q, ω) , (3)

with q = kf − ki the momentum transfer, m0 the bare
electron mass, and the generalized correlation function

χ(q, t) = iΘ(t)
〈[
N†(q, t), N(q, 0)

]〉
, (4)

and n(ω) the Bose distribution.
The operator N(q) is of the form

N(q) =
∑
α,α′

γα,α′(ki,kf )c†αcα′ . (5)
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It contains the creation and annihilation operators of the
electrons in the conduction band states |α〉, |α′〉. The ma-
trix elements γα,α′ are given by

γα,α′ = 〈α|eiq·r|α′〉 (ei · ef )

+
1

m0

∑
β

[
〈α|Jf |β〉〈β|Ji|α′〉

Eα′ −Eβ + h̄ωi
+
〈α|Ji|β〉〈β|Jf |α′〉

Eα −Eβ − h̄ωi

]
(6)

where |β〉 denote states in the valence bands, ei,f are the
polarization vectors of incoming and scattered light, Jµ =
(eµ ·Π) exp(±ikµ · r), (µ = i, f), and the “+” appears
in the exponent when µ = i. The operator Π = p +
(h̄σ × ∇V )/4m0c

2 is the momentum including the spin-
orbit part. The first term in (6) results from the A2-part of
the Hamiltonian, while the second and third terms are due
to the terms ∝ (Π ·A). Near resonance, h̄ωi ≈ EG, the
third term dominates. In the following, we will concentrate
mainly on this contribution.

In order to proceed further, the states have to be spec-
ified. We assume quasi-one-dimensional geometry. We re-
strict the model to two conduction sub-bands, |α〉 ≡ |nsk〉
(n = 1, 2). For the valence band, we assume that the
energy depends on wave number k, spin s only. The
splitting of the valence quasi-one-dimensional sub-bands
will be neglected. This is reasonable since the effective
mass of the valence band mv is large as compared to
that of the conduction band in quantum wires based on
AlGaAs/GaAs hetero structures. We decompose the
states with spin quantum number s into a plane-wave
phase factor (wave number k) and factor which is lattice
periodic in the direction of the wire. Then, we can write

N(q) =
∑

s,s′n,n′,k

γns,n′s′(ki,kf )

Dn(k, q)
c†ns(k + q)cn′s′(k) , (7)

which contains the Fermion operators c†ns(k), cns(k) with q
the x-component of kf−ki. They generate and annihilate,
respectively, electrons with wave number k and spin s = ±
in the sub-band n. The matrix

γns,n′s′(ki,kf )=δss′ ei·Γ
(1)
nn′ ·ef + i(ei×ef )·Γ (2)

nn′ ·S (8)

describes the dependence on the relative polarizations of

the incoming and the scattered light. The matrices Γ
(j)
nn′

(j = 1, 2) contain the transition matrix elements between
the valence and the conduction bands. They contain also
the sums over the different valence sub-bands. The vec-
tor S contains as components the matrix elements of the
operator of the spin vector.

The first term in (8) contains the momentum contribu-
tion, p, to Jµ. It probes charge density excitations when
assuming constant energy denominator. The second orig-
inates in the presence of spin-orbit coupling in Jµ. It is
associated with spin flips, and probes spin density excita-
tions for constant energy denominator. The latter,

Dn(k, q) = En(k + q)−Ev(k + q − kix)− h̄ωi, (9)

contains the difference between the energies of the valence
and conduction bands Ev and En, respectively.

In the following, we are interested in general features
of the cross-section, rather than attempting a full calcu-
lation, including all of the effects of the transition matrix
elements. In particular, we do not consider anisotropy and
non-parabolicity effects [23,24]. Therefore, we can assume

Γ
(j)
nn′ = γ

(j)
nn′I such that

γns,n′s′(ki,kf ) = δss′
[
γ

(1)
nn′ei · ef + iγ

(2)
nn′ |ei × ef |s

]
.

(10)

Here, we assumed a coordinate system with S || ẑ, and
the polarization vectors perpendicular to the z-direction.

3 Collective excitations

In order to be able to calculate the correlation functions
(4), we need to diagonalize the Hamiltonian including the
interaction. This is the subject of this section.

3.1 One band with spin

In the one-band case, the diagonalization can be per-
formed exactly by using the Luttinger Hamiltonian
[1,2,26–29]. In this model, the spectrum of the non-
interacting electrons is linearized around the Fermi energy.
The spectrum consists of two branches, corresponding to
right and left moving electrons, described by Hamiltonians

h̄vF (k − kF )c(+)†
s (k)c(+)

s (k) ,

and

−h̄vF (k − kF )c(−)†
s (k)c(−)

s (k) ,

respectively (s = ± spin quantum number). Using this
approximation, which is justified for the pair excitations
with the smallest energies, the Hamiltonian of the inter-
acting electrons becomes a sum of two terms,

H = Hρ +Hσ . (11)

Neglecting back-scattering and Umklapp contributions [2],
Hρ and Hσ are quadratic forms that describe the charge
and spin density excitations, respectively. They consist of
terms which represent the non-interacting particles and
the interactions, H0

ν and H ′ν (ν = ρ, σ), respectively. For
the charge density excitations,

H0
ρ =

hvF

L

∑
q>0

[ρ(+)(q)ρ(+)(−q) + ρ(−)(−q)ρ(−)(q)] ,

(12)

H ′ρ =
2

L

∑
q≥0

V (q)[ρ(+)(q)ρ(+)(−q) + ρ(−)(−q)ρ(−)(q)]

+
2

L

∑
q

[
V (q)−

gb

2

]
ρ(+)(q)ρ(−)(−q) , (13)
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with V (q) the Fourier transform of the interaction poten-
tial and a parameter gb ≈ V (2kF ) for the exchange inter-
action. The operators ρ(+) and ρ(−) are Fourier transforms
of the densities of the right and left moving electrons, re-
spectively. They are the sums of the densities of electrons
with spin “up” (b = ± branch index),

ρ
(b)
+ (q) ≡

∑
k

c
(b)†
+ (k + q)c

(b)
+ (k) , (14)

and spin “down”,

ρ
(b)
− (q) ≡

∑
k

c
(b)†
− (k + q)c

(b)
− (k) . (15)

The density is

ρ(b)(q) =
1
√

2

[
ρ

(b)
+ (q) + ρ

(b)
− (q)

]
. (16)

The Hamiltonian Hρ = H0
ρ + H ′ρ can be diagonalized by

a standard Bogolubov transformation

ρ(b)(q) = r(b)(q) coshϕq − r
(−b)(q) sinhϕq , (17)

where exp (2ϕq) = vF |q| (1 + gb/hvF ) /ωρ(q). This gives
the spectrum of the charge modes

ωρ(q)≡vρ(q)|q|≡vF |q|

{(
1+

gb

hvF

)[
1−

gb

hvF
+

4V (q)

hvF

]}1/2

.

(18)

The new operators are related to the Bose distribution nk
via the two-point correlation function

〈r(b)(k)r(b′)(k′)〉 =
L

2π
|k|[nk +Θ(−bk)]δk,−k′δb,b′ (19)

and their time evolution is

r(b)(k, t) = r(b)(k)eibkvρ(k)t . (20)

The spin Hamiltonian,Hσ = H0
σ+H ′σ, which is completely

decoupled from that of the charge (12, 13), is

H0
σ =

hvF

L

∑
q>0

[
σ(+)(q)σ(+)(−q) + σ(−)(−q)σ(−)(q)

]
(21)

H ′σ = −
gb

L

∑
q>0

σ(+)(q)σ(−)(−q) . (22)

In analogy with (16), the spin density is defined as

σ(b)(q) =
1
√

2

[
ρ

(b)
+ (q)− ρ(b)

− (q)
]
. (23)

The dispersion of the spin density excitations is

ωσ(q) ≡ vσ|q| ≡ vF |q|

√
1−

g2
b

h2v2
F

, (24)

which is obtained again by a Bogolubov transformation

σ(b)(q) = s(b)(q) coshϑq − s
(−b)(q) sinhϑq . (25)

As for the charge density excitations above, exp (2ϑq) =
vF |q| (1 + gb/hvF ) /ωσ(q). Again, the correlation function
of the new operators is related to the Bose distribution,

〈s(b)(k)s(b′)(k′)〉 =
L

2π
|k| [nk +Θ(−bk)] δk,−k′δb,b′ (26)

and their evolution in time is

s(b)(k, t) = s(b)(k)eibkvσt . (27)

3.2 Two bands with spin

In the case of two conduction bands, the Hamiltonian of
the interacting electrons can be written as a quadratic
form only under certain additional assumptions that are
very restrictive with respect to the interaction matrix el-
ements. In the following, we concentrate on those terms
which provide a quadratic representation of the two-band
model and discuss only very briefly the terms that are
neglected. We assume that the dispersion relations of the
non-interacting electrons are given by

Ej(k) = Ej +
h̄2k2

2mc
(28)

with Ej (j = 1, 2) the confinement energies and mc the
effective mass in the sub-bands.

We start from the general expression of the interaction

1

2L

∑
ss′

∑
ijlm

∑
qkk′

Vijlm(q)c†is(k + q)c†js′(k
′)cls′(k

′ + q)cms(k)

(i, j, l,m = 1, 2 band indices). For a screened Coulomb
potential,

V (r) =
e2

4πε

e−α|r|

|r|
≡ V0

e−α|r|

|r|
, (29)

(r = (x, y)) and assuming a parabolic confinement po-
tential for the quantum wire, the matrix elements of the
interaction, Vijlm(q), can be expressed in terms of special
functions (cf. Appendix). The parameters α and ε are the
inverse range of the potential and the dielectric constant.

For two bands, there are four non-zero matrix ele-
ments. Three of them, V1 ≡ V1111, V2 ≡ V2222, V12 ≡
V1221 = V2112 correspond to density-density interaction
terms ∝ ρiρj. While the former two correspond to intra-
band terms, ∝ ρiρi, the latter couples the two bands. The

remaining matrix element Ṽ12 ≡ V1212 = V2121 = V1122 =
V2211 corresponds to interaction terms which couple am-
plitudes in the two bands, for instance ρ12ρ21 with (i 6= j)

ρij(q) ≡
∑
sk

c†is(k + q)cjs(k) .
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Generally, these cannot be cast into a density-density
form.

Introducing now the Luttinger approximation by lin-
earizing the one-particle energy spectrum around the
Fermi energy, and decomposing the Fermion operators
into left- and right-moving branches,

cis ≡ c
(+)
is + c

(−)
is ,

one decomposes the interaction into many non-trivial con-
tributions. Many of them are not of the density-density

type. We neglect all terms originating in Ṽ , which are
important for describing inter-band excitations, as well
as part of the intra- and inter-band backscattering, which
cannot be written as density-density forms. By taking into

account only the exchange contributions in Ṽ12, one ar-
rives at an effective two-band Hamiltonian, which is of
the density-density form and can be diagonalized.

3.2.1 The quadratic Hamiltonian

The resulting Hamiltonian can be decomposed into three
parts that describe each of the bands and a contribution
due to the interaction-induced band-band mixing,

H = H1 +H2 +H12 . (30)

Here, Hj are given by the above Hamiltonian (11) with
the interaction matrix elements depending on the band
index and the Fermi velocities vjF =

√
2(EF −Ej)/mc.

For the present purposes, it is sufficient to consider Vj(q)
and gbj ≡ Vj(2kjF ) in order to describe forward and back-
ward scattering within the bands, respectively. The cor-
responding inter-band terms, which enter H12, are V12(q)

and gb12 ≡ Ṽ12 (k1F + k2F ).
The inter-band part of the Hamiltonian of the charge

density excitations is then

H12(ρ) =
2

L

∑
q

V12(q)
∑
b=±

ρ
(b)
1 (q)ρ

(b)
2 (−q)

+
2

L

∑
q

[
V12(q)−

gb12

2

]∑
b6=b′

ρ
(b)
1 (q)ρ

(b′)
2 (−q) ,

(31)

and for the spin density part we have

H12(σ) = −
gb12

L

∑
q

∑
b6=b′

σ
(b)
1 (q)σ

(b′)
2 (−q) . (32)

3.2.2 Intra-band excitations in the two-band model

The above two-band model can be exactly diagonalized
following the method used by Penc and Solyom [36]. We
start by writing the Hamiltonians of the spin and the
charge excitations in the compact form (ν = ρ, σ)

Hν =
h

L

∑
q>0,λ,λ′

Aνλ,λ′(q)νλ(q)νλ′(−q) , (33)

where

Aνλ,λ′(q) = |vλ|δλ,λ′ + V νλ,λ′(q) , (34)

with v1 = −v2 = v1F and v3 = −v4 = v2F and ν1 =

ν
(+)
1 , ν2 = ν

(−)
1 , ν3 = ν

(+)
2 , ν4 = ν

(−)
2 . The 4×4-matrices

V ν contain the interaction matrix elements. They can be
deduced from (31, 13) for the charge and from (32, 22) for
the spin excitations.

In order to diagonalize Aν , we have to solve the eigen-
value problem

BAν |wνn〉 = uνn|w
ν
n〉 (35)

with the diagonal matrixBλ,λ′ = δλ,λ′ sgn (vλ). The trans-
formed charge and spin density operators are then given in
terms of the eigenvectors |wνn〉, rn(q) = 〈wνn|ν(q)〉, with the
column vectors of the density operators |ν(q)〉 = {νλ(q)}.
The diagonalized Hamiltonian is given by

Hν =
h

L

∑
q>0

4∑
n=1

|uνn|r
ν
n(q)rνn(−q) . (36)

The eigenvalues of the matrix BAν , uνn, correspond to the
renormalized velocities of the density excitations.

In order to evaluate the correlation functions, one
needs also the inverse transformation

νλ(q) = sgn (vλ)
4∑

n=1

wνλnr
ν
n(q) sgn (uνn) . (37)

3.2.3 Excitation velocities for Coulomb interaction

Tediously, but straightforwardly, the above eigenvalue
problem can be solved. The eigenvalues come in pairs,
uν1 = −uν2 = uν+; uν3 = −uν4 = uν−. Keeping only the lead-
ing terms of the interaction for q → 0, the results for the
in-phase and out-of-phase charge sound modes are

uρ+(q) =

√
4V (q)

h

[
v̄1 + v̄2 +

2gb12

h

]
, (38)

and

uρ−(q) =
√
v̄1v̄2

√
v̄1 + v̄2 + 2(V0 − gb1 − gb2)/h

v̄1 + v̄2 + 2gb12/h
, (39)

respectively, with the definitions v̄j ≡ vjF + gbj/h, (j =
1, 2). The velocity of the in-phase mode is determined by
the logarithmically diverging long-range part of the in-
teraction via V (q) (see Appendix). For the out-of-phase
mode this long-range part is not present.

Neglecting the (very small) backscattering matrix el-
ements, the velocity uρ− of the out-of-phase mode is pro-
portional to the geometric average of the Fermi velocities.
If the Fermi level is close to the band edge of the energet-
ically higher band, the corresponding Fermi velocity will
be vanishingly small.
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Correspondingly, the spin modes are (assuming vjF �
gbj , |v1F − v2F | � gb12)

uσ+ =

√
v2

1σ −
2g2
b12v1F

h(v2
1F + v2

2F )
, (40)

and

uσ− =

√
v2

2σ −
2g2
b12v2F

h(v2
1F + v2

2F )
, (41)

respectively. Note, that the intra-band spin excitations
propagate approximately with the same velocities as with-
out the inter-band interaction matrix elements.

4 Correlation functions

In the following, we concentrate on the correlation func-
tion (4) in the lowest sub-band. This is sufficient to demon-
strate the main point we want to make in this paper,
namely that intra-band charge and spin density modes
are sufficient to describe completely the energetically low-
est excitations observed in the resonant Raman scattering.

In addition, the above result for the velocities of the
out-of-phase modes (39, 41) can be used to exclude the
possibility proposed earlier, namely that the SPE – the
dispersion of which is linear in q – are due to the out-of-
phase excitations [35]. At the first glance, it is tempting to
try such an interpretation since the out-of-phase modes do
not contain the long range part of the interaction. How-
ever, this would not explain the fact that SPE appears
in both, polarized and depolarized, configurations at the
same energies. As can be seen from (39, 41) the veloci-
ties of spin and charge out-of-phase modes are completely
different. Thus, one would expect SPE at different excita-
tion energies in the two configurations. This is, however,
not consistent with all of the available experimental data.
In addition, the velocity of the SPE remains close to the
Fermi velocity in the lowest sub-band, even if the Fermi
energy is tuned to the onset of the second sub-band such
that [16] uρ− ≈ 0.

The generalization of the results below to include intra-
band excitations in the second sub-band is straightfor-
ward, and can be performed by using the above transfor-
mation for νλ(q) (37).

4.1 The selection rules

We proceed by treating the energy denominator in the
operator N(q) in (7). First, we discuss how to arrive at
the “classical” selection rules.

4.1.1 Off-resonance: the “classical” selection rules

The case D(k, q) ≈ const ≡ EG − h̄ωi can be realized by
assuming EG − h̄ωi � h̄vF q, h̄ω, with EG = E0

G + ηEF

(η = 1+mc/mv)), the energetic distance between the con-
duction and the valence band at the wave Fermi number
kF and EF = h̄2k2

F /2mc, the Fermi energy. From now
on we assume E1 = 0. We further assume back scatter-
ing geometry for the experiment, i.e. kix = q/2. Then,
N(q) ≡

∑
b=±N

(b)(q), and

N (b)(q) =

√
2

EG − h̄ωi
[γ1ei · ef ρ(q) + iγ2|ei × ef |σ(q)]

(42)

is proportional to the charge and spin densities, depend-
ing on whether incoming and outgoing light are polarized
parallel or perpendicular, respectively. Thus, in lowest or-
der, one observes charge density excitations in polarized,
and spin density excitations in the depolarized configura-
tion. These are the “classical” selection rules used in the
interpretation of Raman spectra.

4.1.2 The breakdown of the selection rules near resonance

Close to the resonance, when h̄ωi ≈ EG + h̄vF q, the as-
sumption of a constant energy denominator is no longer
valid. We expect that the above selection rule is relaxed.
This will now be shown by expanding D(k, q)−1 to first
order in h̄vF q(h̄ωi −EG)−2,

D(k, q) = E0
G + η

h̄2k2

2mc
+
h̄2kq

mc
ξ − h̄ωi +O(q2) , (43)

with ξ = 1 +mc/2mv. Since q � kF , and the excitations
involve occupied and non-occupied states near the Fermi
energy, we can linearize around k = kF .

The expansion of the inverse of the energy denomina-
tor yields contributions to N(q) which are of the form of
“energy density fluctuations” [21,24],

∆N (b)(q) = −
ηh̄vF

(EG − h̄ωi)2

∑
sk

γs(ki,kf )(bk − kF )

× c(b)†s (k + q)c(b)s (k)

≡ −
ηh̄vF

(EG − h̄ωi)2

∑
s

γs(ki,kf )∆N (b)
s (q) .

(44)

The matrix elements γs(ki,kf ) contain scalar and vector
products of the polarization vectors. Expression (44) can
be expressed by the above charge and spin density oper-
ators by using the bosonization technique developed for
the Luttinger model in [2,27].

The starting point is that one can write [27]

b∆N (b)
s (q) = i

dI
(b)
s (q, a)

da

∣∣∣∣∣
a=0

−
q

2
ρ(b)
s (q) (45)

where

I(b)
s (q, a) =

∑
k

e−ia(k−bkF+q/2)c(b)†s (k + q)c(b)s (k) . (46)
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This is equivalent to

I(b)
s (q, a) =

∫ ∞
−∞

dx eibkF aeiqxψ(b)†
s

(
x+

a

2

)
×ψ(b)

s

(
x−

a

2

)
(47)

and can be expressed in terms of the Boson operators ρ
and σ by using the relation between these and the Fermion
fields ψ,

ψ(b)
s (x) =

eibkF x
√

2πλc
e−ib[M

(b)
ρ (x)+sM(b)

σ (x)] (48)

where

M (b)
ν (x) = −

√
2πi

L

∑
q 6=0

e−iqx

q
ν(b)(q)− ixν(b)(0)

 ,
(49)

with ν ≡ ρ, σ [2,28]. The quantity λc is the cutoff-
wavelength of the Luttinger model. By introducing this
into the above definition (46), and evaluating the prod-

uct of the exponentials of the operators M
(b)
ν (x) by using

Weyl’s relation and the commutators of the operators ρ
and σ we find

I(b)
s (a) =

ib

2πa

∫ ∞
−∞

dxeiqxe−2πiaΦ̂(b)(q=0)

×eiΦ
(b)†(x)eiΦ

(b)(x) , (50)

where we have abbreviated

Φ(b)
s (x) = −4πb

∑
q>0

eibqx

q
sin

qa

2
Φ̂(b)(q) , (51)

Φ̂(b)(q) =
1
√

2L

[
ρ(b)(−bq) + sσ(b)(−bq)

]
. (52)

By expanding I
(b)
s (a) to the second order in a we eventu-

ally obtain the final result

∆N (b)
s (q) =

π

2L

∑
k

:
[
ρ(b)(k) + sσ(b)(k)

]
×
[
ρ(b)(q − k) + sσ(b)(q − k)

]
: −

qb

2
ρ(b)
s (q) , (53)

with : · · · : denoting normal ordering of the operators. The
last term in this equation is a correction to the density (42)
and is neglected in the following. By inserting into (44)

∆N (b)(q) = −
ηvF

(EG − h̄ωi)2

h

2L

×
∑
k

[
2iγ2|ei × ef |ρ

(b)(k)σ(b)(q − k) + γ1(ei · ef )

: ρ(b)(k)ρ(b)(q − k) + σ(b)(k)σ(b)(q − k) :
]
. (54)

Equation (54) is the main result of this work. The eval-
uation of the corresponding correlation function can be
done exactly but is considerably more complicated than
for N(q) ∝ σ(q)/(EG− h̄ωi). However, the form of ∆N(q)
shows that in general the spin density fluctuations will
contribute to the cross-section in the polarized configura-
tion besides the charge density fluctuations. Correspond-
ingly, signatures of the latter can be expected in the de-
polarized spectrum. The “classical” selection rule which
says that charge-wave excitations appear only in the po-
larized configuration and spin-wave excitations only in the
depolarized spectrum, respectively, is only valid in the low-
est approximation, when the wave vector dependence of
D(k, q) is neglected.

4.2 Resonant Raman scattering in the polarized
configuration

The lowest order contribution to the correlation function
(4) in the polarized configuration is

χ(2)
ρ (q, t) ≡ iΘ(t)

2γ2
1

(EG − h̄ωi)2

×
∑
bb′

〈[
ρ(b)(−q, t)ρ(b′)(q, 0)

]〉
. (55)

By using the Bogolubov transformation (17) and the time
evolution (20), one obtains (ω > 0)

Imχ(2)
ρ (q, ω) =

γ2
1

(EG − h̄ωi)2

vρ(q)

vF

(
1 +

gb1

hvF

)−1/2

×Lqδ(ω − ωρ(q)) . (56)

For the contribution in lowest non-trivial order of the
spin excitations to the correlation function of the polar-
ized spectrum we need to calculate the correlators (h̄ω,
h̄vF q � |EG − h̄ωi|)

C(4)
σ (q, t) =

∑
k,k′

∑
b,b′

〈σ(b)(k, t)σ(b)(−k − q, t)

×σ(b′)(k′, 0)σ(b′)(q − k′, 0)〉 . (57)

By inserting into this the above Bogolubov transformation

(25), we obtain C
(4)
σ in terms of the new operators which

diagonalize Hσ.
The correlator can now be evaluated by using Wick’s

theorem to decompose into products of two-particle cor-
relators. After a lengthy calculation one obtains two parts
of the spin contribution to the polarized spectrum. The
first describes a resonance-like structure and the second
is a continuous background which extends above the fre-
quency of the spin excitations, vσq. At the temperature
T , the resonance-like part is found to be (ω > 0)

Im χ(4)
σ (q, ω) =

Lq

12

(ηh̄vσγ1)2

(EG − h̄ωi)4

[(
πkBT

h̄vσ

)2

+
q2

2

]

×δ(ω − vσq) . (58)
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This indicates a structure in the cross-section at an energy
given by vσq which is the same as that of the SDE peak
in the depolarized spectrum far from resonance.

The general result valid very close to resonance can be
written in a closed form, but the remaining integrals have
to be computed numerically [37].

For the background contribution, one obtains (for sim-
plicity we provide only the result for T = 0)

Im χ(4)
σ (q, ω) =

L

16

(ηh̄vσγ1)2

(EG − h̄ωi)4

(
1−

v2
σ

v2
F

)

×
ω2 − v2

σq
2

v3
σ

Θ(ω − vσq) . (59)

The background increases with ω2, and does not destroy
the resonance-like part of the correlation function.

4.3 Resonant Raman scattering in the depolarized
configuration

In the depolarized spectrum, out of resonance, when the
energy denominator is constant, the spin part is

χ(2)
σ (q, t) = iΘ(t)

2γ2
2

(EG − h̄ωi)2

×
∑
bb′

〈[
σ(b)(−q, t)σ(b′)(q, 0)

]〉
, (60)

which gives the peak corresponding to the SDE (ω > 0),

Im χ(2)
σ (q, ω) =

Lqγ2
2

(EG − h̄ωi)2

(
1−

gb1

hvF

)1/2

×δ(ω − vσq) . (61)

Although this SDE-peak appears at the same energy as
the above spin-excitation peak in the polarized spectrum,
their strengths depend differently on the photon energy.
While the weight of the SDE-peak increases quadrati-
cally with decreasing |EG − h̄ωi|, the peak in the polar-
ized spectrum increases with the 4th power. The SDE-
related peak in the depolarized spectrum is also indepen-
dent of the temperature, due to the linearization of the
spectrum, while the peak in the polarized spectrum in-
creases quadratically with T .

Also in the depolarized configuration, we obtain a re-
laxation of the “classical” selection rules near resonance.
The cross-section in next higher order contains the corre-
lation function

C(4)
σρ (q, t) =

∑
k,k′

∑
b,b′

〈ρ(b)(k, t)σ(b)(−k − q, t)

×ρ(b′)(k′, 0)σ(b′)(q − k′, 0)〉 . (62)

No correlation functions with four charge density opera-
tors alone appear. Due to the absence of spin-charge cou-
pling in the Hamiltonian, (62) factorizes into products of

the type 〈σ(−k − q, t)σ(q − k′, 0)〉〈ρ(k, t)ρ(k′, 0)〉 indicat-
ing independent motion of the spin and charge modes.
One cannot expect structure in the cross-section that is
solely determined by the charge density excitations. We
find that the simultaneous propagations of the two types of
excitations leads to a broad continuum in the depolarized
spectrum with roughly a parabolic shape. This extends
between the frequencies ωσ(q) and ωρ(q). In addition, we
find a background scattering intensity above the frequency
of the SDE, in analogy with the above background in the
polarized spectrum. The total contribution to the cross-
section evaluated at T = 0 and assuming vρ(q) ≈ const
is

Imχ(4)
σρ (q, ω) =

L

2

(ηh̄vF γ2)2

(EG − h̄ωi)4

{
cosh2(ϕq + ϑq)

×
(ω − ωσ)(ωρ − ω)

∆v3
−

Θ(ωρ − ω)Θ(ω − ωσ)

+ sinh2(ϕq + ϑq)
(ω − ωσ)(ωρ + ω)

∆v3
+

×
[
Θ(ω − ωρ) +Θ(ω − ωσ)

]}
, (63)

where ∆v± = vρ ± vσ and ϕq, ϑq are defined in (17, 25).
Also in the contributions that are still higher order in

h̄ω, h̄vF q � |EG − h̄ωi|, we do not find correlators that
contain only charge density operators since the depolar-
ized part of the cross-section originates in the spin-orbit
coupling [22] (cf. (8)) and the corresponding excitation
processes are accompanied by spin-flip processes. This im-
plies that all of the terms contributing towards the depo-
larized cross-section must contain at least one pair of spin
density operators, and structure related to the charge den-
sity excitations alone is absent.

5 Discussion and comparison with experiment

Comparing with experiment, we first note that all works
agree in the linear dependence of the excitation energy on
the wave number of the peak associated with the “SPE” in
the polarized spectrum. In [14], the velocity of the “SPE”
has been found to be approximately the same as the ve-
locity of the SDE determined from the depolarized spec-
tra, and approximately equal to the Fermi velocity in the
lowest occupied sub-band. Our results are consistent with
this, if we assume that |gb/hvF | � 1. If the Fermi ve-
locity was determined independently, the spin interaction
constant gb could in principle be determined. However, it
is expected that gb is in any case very small [33] so that
vσ = vF to a very good approximation. In [16], data have
been presented (Figs. 1 and 2) which seem to indicate that
“SPE” and SDE peaks are slightly different in energy, the
velocity of the former being approximately vF while that
of the latter has been identified to be slightly smaller.
However, when taking the error bars into account it is not
possible to distinguish between the positions of the peaks.
Thus, these results can also be considered to be consistent
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with our present model, which is asymptotically exact for
low energy excitations.

We cannot completely exclude that there are many-
particle corrections to the spin excitations beyond our
model. In particular, if the spin Hamiltonian (21) con-
tained additional quartic terms, we could not exclude that
the poles of the above quartic correlator (57) were differ-
ent in energy from those of the quadratic correlator (60).
Also corrections due to higher sub-bands could lead to cor-
rections which could cause different excitation velocities.
However, in view of the recent experiments on samples
with several sub-bands occupied [14], we consider this as
very improbable.

To the best of our knowledge, there are up to now no
systematic measurements of the dependence of the heights
and the widths of the “SPE” peaks in the polarized spec-
trum near resonance as functions of the photon energy
and the temperature. Such measurements could provide
further support for our above interpretation. One should
have in mind that for quantum wires the precise value
of the gap energy EG is not known. Measurement of the
dependence on the photon energy of the incoming light
would provide the possibility of determining EG.

Concerning the above predicted additional structure in
the depolarized spectrum, the only, though very weak ex-
perimental evidence we could find was in Figure 2 of [16].
These authors interprete a slight asymmetry in the peak
associated with SDE as a signature of the “SPE”. Our
above described findings offer a different interpretation:
the asymmetry could be due to the continuum contribu-
tion to the depolarized spectrum which originates in the
motions of simultaneously excited spin and charge den-
sity waves. Further experiments using wires with only a
few sub-bands occupied are necessary, in order to confirm
this interpretation.

Within the present model, we cannot comment on the
experimental inter-band results in quantum wires with
higher sub-bands involved, where “SPE” and SDE have
clearly different excitation energies. Due to the compara-
bly high excitation energies, the peculiarities of the Lut-
tinger model are absent in this region. Especially, one can
expect the Fermi liquid character of the electron gas to
be restored. However, we also expect for these excitations
corrections towards the Raman cross-sections in both con-
figurations due to wave vector dependent terms in D(k).
We suspect that these (i) do not obey the “classical” se-
lection rules and (ii) will in general produce structures at
different energies than those of SDE and CDE.

6 Conclusion

In summary, we have presented results for the intra-band
Raman spectra of a quantum wire. They are consistent
with all of the experimental findings presently available
at low excitation energies. We have shown that the low-
energy “SPE” in the polarized spectrum near resonance
can be interpreted as signature of the spin excitations of
the 1D electron gas with excitation energies very close to
those of the SDE but considerably different from those

of the CDE. Accepting this, the presently available data
of resonant Raman scattering provide clear evidence for
the charge-spin separation predicted by the theory of the
Luttinger liquid and for the non-Fermi liquid character of
the 1D electron gas at low excitation energies. The mea-
surement of the above predicted dependence of the peak
intensities on the photon energy and on the temperature,
namely ∝ |EG−h̄ωi|−4 and const+T 2, respectively, could
further confirm our interpretation.

In addition, we predict a continuum in the cross-
section which extends between the frequencies of the spin
and the charge excitations in the depolarized spectrum
near resonance. It is related to simultaneous but indepen-
dent propagation of spin and charge modes.
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strukturierte Festkörper”, Projects Kr 627 and from Istituto
Nazionale di Fisica della Materia within PRA97(QTMD).

Appendix

The starting point for evaluating matrix elements of the
interaction is the expression for the screened Coulomb po-
tential (29). Assuming a parabolic confinement in the y-
direction the confinement states are (n integer)

ψnk(x, y) =
eikx
√
L
φn(y) , (64)

with φn the eigenstates of the harmonic oscillator. The
matrix elements of the interaction in terms of these states
are given by

Vijlm(q) =

∫
dy

∫
dy′φ∗i (y)φ∗j (y

′)

×V (q, |y − y′|)φl(y
′)φm(y) , (65)

with the Fourier transform of V (r) with respect to x

V (q, y) = 2V0K0

(
|y|
√
q2 + α2

)
(66)

with K0 the zero-order modified Bessel function. For two
bands, we assume the confinement states to be the two
harmonic oscillator states with the lowest energy (i = 1, 2)

φi(y) =

(
2

πd2

)1/4(
2y

d

)i−1

e−(y/d)2

, (67)

with d the width of the wire in the y-direction. The in-
tegral in (65) can be performed in terms of the Wittaker
special functions Wλ,µ(x) [38]. The non-vanishing matrix
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elements are

V1 ≡ V1111 = M1(q) , (68)

V2 ≡ V2222 =

[
3

4
M1(q)−M2(q) +M3(q)

]
, (69)

V12 ≡ V1221 = V2112 =

[
M1(q)

2
+M2(q)

]
, (70)

Ṽ12 ≡ V1212 = V1122 = V2211 = V2121

=

[
M1(q)

2
−M2(q)

]
, (71)

where

Mν(η) =
2V0√
πη
Γ 2

(
2ν − 1

2

)
eη

2/8W1−ν,0

(
η2

4

)
, (72)

with η = d
√
q2 + α2. In view of the experiments on quan-

tum wires, we consider the case of a long-range interaction
(αd → 0). Of interest is then the long wave-length limit,
q → 0. The leading terms in (71) are

V1 = V (q) + 2V0

(
2 log 2−

c

2

)
(73)

V2 = V1 − V0 ≡ V12 (74)

Ṽ12 = V0 , (75)

with V (q) = 2V0| log qd| and c the Euler constant. Thus,
the logarithmically divergent terms of the interaction cou-
ple only to ρ1 + ρ2 of the charge density.

It is easy to see from (75) that the first three matrix
elements, responsible for the density-density interactions

are equal for q → 0. On the other hand, Ṽ12 is finite. This
matrix elements influences only the inter-band modes, and
does not enter the intra-band modes. The exchange con-

stants gbj = Vj(kjF ) and gb12 = Ṽ12(k1F +k2F ) do not feel
the long-range part V (q) of the interaction. They can be
evaluated from the general expression (71). Since kF d ≥ 1,
these constants are often very small.
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